Science and Engineer Importance to Singapore

Singapore has boosted its water supply through water-recycling and also increased its land area by reclaiming land, all feats accomplished by engineers. And engineering will continue to be important for Singapore's future, as the country works towards becoming a smart nation and overcoming its lack of resources
Prime Minister Lee Hsien Loong
(50th anniversary celebration of the IES)

Thursday, October 4, 2018

Logo of LIM Jun Long

PhD Thesis Published in DR-NTU


Design and analysis of solid-core microstructured optical fiber sensors for sensing surrounding refractive index and surrounding temperature


LIM, Jun Long; #limjunlong


The microhole collapsing effect technique is a relatively simple fabrication process that produces Photonic Crystal Fiber (PCF) refractometer using modal interferometry in the range of 10^−5 refractive index resolution. The repeatable method preserves the same 125 μm structural integrity of the optical fiber for various applications such as multi-parameter sensing and bioaffinity. Compared to previous reports for conventional strain or temperature sensing using a single microbubble, the use of two microbubbles in the in-line microbubble structure significantly increases the light-molecule interaction for developing ultralow concentration biosensor. It has also been demonstrated as a potential reusable and label-less PCF biosensor platform. For temperature sensing, another low-complexity approach for fabricating a PCF directional coupler structure, without costly masking or precision marking laser, is also discussed. Numerical simulations have also been investigated on the PCF directional coupler structure to validate experimental result and on the microfluidic optical fiber device to rapidly find optimal fabrication-sensitivity design.



[direct link[direct download link]


[Box] [zip] [7z] [short url][Google Drive] [zip] [7z][Google Drive Link #2] [Dropbox] [zip] [7z][4Shared] [zip] [7z][Mediafire] [zip] [7z][OneDrive-1[OneDrive-2] *OneDrive-2101: [Link][iCloud[]   



Lim, J. L. (2018). Design and analysis of solid-core microstructured optical fiber sensors for sensing surrounding refractive index and surrounding temperature. Doctoral thesis, Nanyang Technological University, Singapore. 


Lim, J. L. "Design and analysis of solid-core microstructured optical fiber sensors for sensing surrounding refractive index and surrounding temperature," PhD diss., Nanyang Technological University, 2018

Online Snapshot

Snapshot of Recent submissions in DR-NTU
Recent submissions in DR-NTU
Thesis information page in DR-NTU
Thesis information page in DR-NTU

Thesis detail information page in DR-NTU
Thesis detail information page in DR-NTU


  1. J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, "All-silica singlemode optical fiber with photonic crystal cladding," Opt. Lett., vol. 21, no. 19, pp. 1547-1549, 1996.
  2. M. Walton, K. Eremin, A. Shortland, P. Degryse and S. Kirk, "Analysis of late bronze age glass axes from nippur - a new cobalt colourant," Archaeometry, vol. 54, no. 5, pp. 835-852, 2012.
  3. D. B. Keck and P. C. Schultz, "Method of producing optical Waveguide fibers". USA Patent 3,711,262, 16 Jan 1973.
  4. K. C. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Proc. of IEE, vol. 133, no. 7, pp. 1151-1158, 1966.
  5. L. Xiao, M. S. Demokan, W. Jin, Y. Wang and C.-L. Zhao, "Fusion Splicing Photonic Crystal Fibers and Conventional Single-Mode Fibers: Microhole Collapse Effect," J. Lightw. Technol., vol. 25, no. 11, p. 3563−3574, 2007.
  6. J. Ju, W. Jin, Y. L. Hoo and M. S. Memokan, "A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber," Microwave and Opt. Techno. Lett., vol. 42, no. 2, pp. 171-173, 2004.
  7. Y. L. Hoo, W. Jin and H. L. Ho, "Loss analysis of single-mode fiber/photonic-crystal fiber splice," Microwave and Opt. Techno. Lett., vol. 40, no. 5, pp. 378-380, 2004.
  8. P. V. Kaiser and H. W. Astle, "Low-loss single-material fibers made from pure fused silica," The Bell System Technical Journal, vol. 53, no. 6, p. 1021–1039, 1974.
  9. E. Hecht, "Interference," in Optics, San Francisco, Addison Wesley, 2002, pp. 385-389.
  10. E. Udd, "An overview of fiber-optic sensors," Rev. Sci. Instrum., vol. 66, no. 8, pp. 4015-4030, 1995.
  11. X. Shu, L. Zhang and I. Bennion, "Sensitivity Characteristics of Long-Period Fiber Gratings," Journal of Lightware Techno., vol. 20, no. 2, pp. 255-266, 2002.
  12. P. Hoffmann, B. Dutoit and R.-P. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,"Ultramicroscopy, vol. 61, no. 1-4, pp. 165-170, 1995.
  13. M. Ozcan, A. Allahbeickaraghi and M. Dündar, "Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review," Clin Oral Invest, vol. 16, no. 1, pp. 15-23, 2012.
  14. V. R. Machavaram, R. A. Badcock and G. F. Fernando, "Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching," Sensors and Actuators A, vol. 138, no. 1, pp. 248-260, 2007.
  15. Q. Wu, Y. Semenova, P. Wang and G. Farrell, "High sensitivity SMS fiber structure based refractometer – analysis and experiment," Opt. Express, vol. 19, no. 9, pp. 7937-, 2011.
  16. S. Silva, O. Frazao, J. Viegas, L. A. Ferreira, F. M. Araujo, F. X. Malcata and J. L. Santos, "Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure," Meas. Sci. Technol., vol. 22, p. 085201 (6pp), 2011.
  17. D. J. J. Hu, J. L. Lim, M. K. Park, L. T.-H. Kao, Y. Wang, H. Wei and W. Tong, "Photonic crystal fiber based interferometric biosensor for streptavidin and biotin detection," IEEE Sel. Topics Quantum Electron., vol. 18, no. 4, pp. 1293-1297, 2012.
  18. S. Gao, W. Zhang, H. Zhang, P. Geng, W. Lin, B. Liu, Z. Bai and X. Xue, "Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature," Sensors and Actuators B: Chemical, vol. 188, pp. 931-936, 2013.
  19. A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im and Y. Chung, "Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings," Appl. Phys. Lett., vol. 98, no. 22, p. 221109, 2011.
  20. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. Shum, H. Wei and W. Tong, "Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index," Opt. Lett., vol. 37, no. 12, p. 2283−2285, 2012.
  21. L. Rindorf and O. Bang, "Highly sensitive refractometer with a photoniccrystal-fiber long-period grating," Opt. Lett., vol. 33, no. 6, pp. 563-565, 2008.
  22. Y. Gong, Y. Guo, Y.-J. Rao, T. Zhao and Y. Wu, "Fiber-Optic Fabry–Pérot Sensor Based on Periodic Focusing Effect of Graded-Index Multimode Fibers," IEEE Photon. Techno. Lett., vol. 22, no. 23, pp. 1708-1710, 2010.
  23. S.-J. Qiu, Y. Chen, J.-L. Kou, F. Xu and Y.-Q. Lu, "Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching," Appl. Opt., vol. 50, no. 22, pp. 4328-4332, 2011.
  24. T. A. Birks, J. C. Knight, B. J. Mangan, A. Ortigosa-Blanch and P. S. J. Russell, "Characterisation of photonic crystal fibres," in Tech. Digest Symp. on Opt. Fib. Measu. (NIST 953), Colorado, 2000.
  25. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell and J.-P. d. Sandro, "Large mode area photonic crystal fibre," Electronics Letters, vol. 34, no. 13, pp. 1347-1348, 1998.
  26. M. C. P. Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc and B. Dussardier, "Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement," Meas. Sci. Technol., vol. 17, no. 5, pp. 992-997, 2006.
  27. N. Khurram, L. V. Nguyen, K. Alameh and Y. Chung, "Cladding Modes analysis of photonics crystal fiber for refractive index sensors using finite element method," in Conference on Lasers and Electro-Optics (CLEO), San Jose, 2010.
  28. W. Liang, Y. Huang, Y. Xu, R. K. Lee and A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phy. Lett., vol. 86, no. 15, p. 151122, 2005.
  29. J.-L. Kou, M. Ding, J. Feng, Y.-Q. Lu, F. Xu and G. Brambilla, "Microfiber-Based Bragg Gratings for Sensing Applications: A Review," Sensors, vol. 12, no. 7, pp. 8861-8876, 2012.
  30. R. M. Samarth, "A Thermo-optically Tunable Optical Filter with Grating Assisted Asymmetric Waveguide Coupling," University of Massachusetts Lowell, ProQuest Dissertations Publishing, Michigan, 2011.
  31. E. J. Dickinson, . H. Ekström and E. Fontes, "COMSOL Multiphysics®: Finite element software for electrochemicalanalysis. A mini-review," Electrochemistry Communications, vol. 40, pp. 71-74, 2014.
  32. X. C. Tong, "Fundamentals and Design Guides for Optical Waveguides," in Advanced Materials for Integrated Optical Waveguides, Switzerland, Springer International Publishing, 2013, p. 32.
  33. J. C. Knight, T. A. Birks, D. M. Atkin and P. S. J. Russell, "Pure silica single-mode fibre with hexagonal photonic crystal cladding," in Optical Fiber Communication (OFC), San Jose, CA, 1996.
  34. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards, New Jersey: Wiley, 2012, p. 15.
  35. P. J. Bennett, T. M. Monro and D. J. Richardson, "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Optics Letters, vol. 24, no. 17, pp. 1203-1205, 1999.
  36. K. Tajima, J. Zhou, K. Nakajima and K. Sato, "Ultralow Loss and Long Length Photonic Crystal Fiber," Journal of Lightwave Technology, vol. 22, no. 1, pp. 7-10, 2004.
  37. F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A, pp. 1-24, 2006.
  38. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science, vol. 285, no. 5433, pp. 1537-1539, 1999.
  39. Y. Zhu, C. Lu and P. Shum, "Photonic crystal fibers and their applications in optical communications and sensors," in Proc. SPIE 4904, Optical Fiber and Planar Waveguide Technology II, China, 2002.
  40. B. Lee, S. Roh and J. Park, "Current status of micro- and nano-structured optical fiber sensors," Optical Fiber Technology, vol. 15, no. 3, pp. 209-221, 2009.
  41. J. Liu, "Fiber-based tunable laser". U.S. Patent US20090041062 A1, 12 Feb. 2009.
  42. A. Afroozeh, S. E. Pourmand and A. Zeinalinezhad, "Simulation and Calculation of the Parameters of PCF under Terahertz Wave Band," Advances in Environmental Biology, vol. 8, no. 21, pp. 263-268, 2014.
  43. Y. Zhao and Z.-q. Deng, "Photonic crystal fiber based surface plasmon resonance chemical sensors," Sensors and Actuators B: Chemical, vol. 2023, pp. 557-567, 2014.
  44. W.-J. Liu, H.-N. Han, L. Zhang, R. Wang, Z.-Y. Wei and M. Lei, "Breathers in a hollow-core photonic crystal fiber," Laser Physics Letters, vol. 11, no. 4, p. 045402, 2014.
  45. J. M. Dudley and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nat. Photon., vol. 3, no. 2, pp. 85-90, 2009.
  46. N. Anscombe, "Photonic crystal pioneer," Nat. Photon., vol. 5, no. 8, pp. 464-465, 2011.
  47. D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang and G. Ren, "A holey fiber  design for single-polarization single-mode guidance," Appl. Opt., vol. 48, no. 20, pp. 4038-4043, 2009.
  48. D. J. J. Hu, P. Shum, C. Lu and G. Ren, "Dispersion-flattened polarization maintaining photonic crystal fiber for nonlinear applications," Opt. Commun., vol. 282, no. 20, pp. 4072-4076, 2009.
  49. D. J. J. Hu, G. Alagappan, Y. K. Yeo, P. P. Shum and P. Wu, "Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding," Opt. Exp., vol. 18, no. 18, pp. 18671-18684, 2010.
  50. Y. Zhu, P. Shum, H.-W. Bay, M. Yan, X. Yu, J. Hu, J. Hao and C. Lu, "Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber," Opt. Lett., vol. 30, no. 4, pp. 367-369, 2005.
  51. H. B. Liu, H. Y. Liu, G. D. Peng and P. L. Chu, "Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings," Opt. Comm., vol. 219, no. 1-6, pp. 139-142, 2003.
  52. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro and V. Pruneri, "Photonic crystal fiber sensor array based on modes overlapping," Opt. Exp., vol. 19, no. 8, pp. 7596-7602, 2011.
  53. E. Li, G.-D. Peng and X. Ding, "High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity," Appl. Phys. Lett., vol. 92, no. 10, p. 101117, 2008.
  54. R. Jha, J. Villatoro and G. Badenes, "Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing," Appl. Phys. Lett., vol. 93, no. 19, p. 191106, 2008.
  55. J. L. Lim, D. J. J. Hu, P. P. Shum and Y. Wang, "Cascaded photonic crystal fiber interferometers for refractive index sensing," IEEE Photon. Jnl., vol. 4, no. 4, pp. 1163-1169, 2012.
  56. K. Milenko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Wolinski, H. Wei and W. Tong, "Photonic crystal fiber tip interferometer for refractive index sensing," Opt. Lett., vol. 37, no. 8, pp. 1373-1375, 2012.
  57. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster and O. Frazão, "Optical refractometer based on large-core air-clad photonic crystal fibers," Opt. Lett., vol. 36, no. 6, p. 852−854, 2011.
  58. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner and M. Rothhardt, "Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers," Opt. Comm, vol. 282, no. 6, pp. 1129-1134, 2009.
  59. Y. Zhu, P. Shum, J.-H. Chong, M. K. Rao and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Opt. Lett., vol. 28, no. 24, pp. 2467-2469, 2003.
  60. H. Kim, J. Kim, U. Paek, B. Lee and K. Kim, "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett., vol. 29, no. 11, pp. 1194-1196, 2004.
  61. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith and B. J. Eggleton, "Tapered photonic crystal fibres: properties, characterisation and applications," Appl. Phys. B, vol. 81, no. 2-3, pp. 377-987, 2005.
  62. D. L. Kingsbury and P. L. Marston, "Scattering by bubbles in glass: Mie theory and phyiscal optics approximation," Appl. Opt., vol. 20, no. 14, pp. 2348-2350, 1981.
  63. F. R. A. Onofri, M. Krzysiek, J. Mroczka, K.-F. Ren, S. Radev and J.-P. Bonnet, "Optical characterization of bubbly flows with a near-critical-angle scattering technique," Exp. Fluids., vol. 47, no. 4-5, p. 721–732, 2009.
  64. G. E. Davis, "Scattering of Light by an Air Bubble in Water," J. Opt. Soc. Am., vol. 45, no. 7, pp. 572-572, 1955.
  65. N. Kopylov and A. R. Kortan, "Method of eliminating light scattering bubbles in optical fiber preforms". USA Patent 5,776,222, 07 Jul. 1998.
  66. A. R. Tynes, A. D. Pearson and D. L. Bisbee, "Loss Mechanisms and Measurements in Clad Glass Fibers and Bulk Glass," J. Opt. Soc. Am., vol. 61, no. 2, pp. 143-153, 1971.
  67. N. Morita and N. Kumagai, "Scattering and Mode Conversion of Guided Modes by a Spherical Object in an Optical Fiber," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 2, pp. 137-141, 1980.
  68. I. D. Chremmos and N. K. Uzunoglu, "Analysis of scattering by a linear chain of spherical inclusions in an optical fiber," J. Opt. Soc. Am. A, vol. 23, no. 12, pp. 3054-3062, 2006.
  69. L. Xiao, W. Jin and M. S. Demokan, "Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges," Opt. Lett., vol. 32, no. 2, pp. 115-117, 2007.
  70. R. Fan, Y. Hou and W. Sun, "Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors," Photonic Sensors, vol. 5, no. 2, pp. 97-101, 2015.
  71. H. Y. Choi, M. J. Kim and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic cystal fiber," Opt. Express, vol. 15, no. 9, pp. 5711-5720, 2007.
  72. S.-F. Cheng and L.-K. Chau, "Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing," Anal. Chem., vol. 75, no. 1, pp. 16-21, 2003.
  73. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco and S. L. Rolston, "Ultrahigh transmission optical nanofibers," AIP Advances, vol. 4, no. 6, p. 067124, 2014.
  74. J. Villatoro, V. Finazzi, G. Coviello and V. Pruneri, "Photonic-crystal-fiber enabled micro-Fabry–Perot interferometer," Opt. Lett., vol. 34, no. 16, pp. 2441-2443, 2009.
  75. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phy. Lett., vol. 91, no. 9, p. 091109, 2007.
  76. J. H. Chong and M. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express, vol. 11, no. 12, pp. 1365-1370, 2003.
  77. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro and V. Pruneri, "Fabry–Perot interferometers built by photonic crystal fiber pressurization during fusion splicing," Opt. Lett., vol. 36, no. 21, pp. 4191-4193, 2011.
  78. D.-W. Duan, Y.-J. Rao, Y.-S. Hou and T. Zhu, "Microbubble based fiberoptic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement," Appl. Opt., vol. 51, no. 8, pp. 1033-1036, 2012.
  79. S. Zhang, Q. Zhong, X. Qian, X. Lin, F. Xu, W. Hu and Y. Lu, "A threebeam path photonic crystal fiber modal interferometer and its sensing applications," J. Appl. Phys., vol. 108, no. 2, p. 023107, 2010.
  80. J. Villatoro, V. P. Minkovich, V. Pruneri and G. Badenes, "Simple all microstructured-optical-fiber interferometer built via fusion splicing," Opt. Express, vol. 15, no. 4, p. 1491−1496, 2007.
  81. D. J. J. Hu, Y. Wang, J. L. Lim, T. Zhang, K. B. Milenko, Z. Chen, M. Jiang, G. Wang, F. Luan, P. P. Shum, Q. Sun, H. Wei, W. Tong and T. R. Wolinski, "Novel Miniaturized Fabry–Perot Refractometer Based on a Simplified Hollow-Core Fiber With a Hollow Silica Sphere Tip," IEEE Sensors Journal, vol. 12, no. 5, pp. 1239-1245, 2012.
  82. W. Qian, C. C. Chan, C.-L. Zhao, Y. Liu, T. Li, L. Hu, K. Ni and X. Dong, "Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation," Sensors and Actuators B: Chemical, Vols. 166-167, pp. 761-765, 2012.
  83. J. H. Chong, P. Shum, H. Haryono, A. Yohana, M. K. Rao, C. Lu and Y. Zhu, "Measurements of refractive index sensitivity using long-period grating refractometer," Opt. Comm., vol. 229, no. 1-6, pp. 65-69, 2004.
  84. P. Schiebener, J. Straub, J. M. H. L. Sengers and J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data, vol. 19, no. 3, pp. 677-718, 1990.
  85. Y. Jung, S. Kim, D. Lee and K. Oh, "Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement," Meas. Sci. Technol., vol. 17, no. 5, pp. 1129-1133, 2006.
  86. A. Mehta, W. Mohammed and E. G. Johnson, "Multimode Interference-Based Fiber-Optic Displacement Sensor," IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1129-1131, 2003.
  87. O. Krupin, H. Asiri, C. Wang, R. N. Tait and P. Berini, "Biosensing using straight long-range surface plasmon waveguides," Opt. Express, vol. 21, no. 1, pp. 698-709, 2012.
  88. J. Beuthan, O. Minet, J. Helfmann, M. Herrig and G. Müller, "The spatial variation of the refractive index in biological cells," Phys. Med. Biol., vol. 41, no. 3, pp. 369-382, 1996.
  89. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari and M. S. Feld, "Tomographic phase microscopy," Nature Methods, vol. 4, no. 9, pp. 717-719, 2007.
  90. R. M. Pearson, "The refractive index of contact lens saline solutions," Contact Lens & Anterior Eye, vol. 36, no. 3, pp. 136-139, 2013.
  91. J. G. Lyubovitsky, "CaltechTHESIS," 15 Apr 2003. [Online]. Available: [Accessed 28 05 2018].
  92. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan and M. S. Feld, "Live cell refractometry using microfluidic devices," Opt. Lett., vol. 31, no. 18, pp. 2759-2761, 2006.
  93. S. M. Partridge, H. F. Davis and G. S. Adair, "The Chemistry of Connective Tissues - 2. Soluble proteins derived from partial hydrolysis of elastin," Biochem. Journal, vol. 61, no. 1, pp. 11-21, 1955.
  94. F. P. Bolin, L. E. Preuss, R. C. Taylor and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt., vol. 28, no. 12, pp. 2297-2303, 1989.
  95. W. J. Bock, T. A. Eftimov, P. Mikulic and J. Chen, "An Inline Core-Cladding Intermodal Interferometer Using a Photonic Crystal Fiber," Jnl. of Lightwave Techno., vol. 27, no. 17, p. 3933, 2009.
  96. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster and O. Frazão, "Optical refractometer based on large-core air-clad photonic crystal fibers," Opt. Lett., vol. 36, no. 6, pp. 852-854, 2011.
  97. Q. Wang and G. Farrell, "All-fiber multimode-interference-based refractometer sensor: proposal and design," Opt. Lett., vol. 31, no. 3, pp. 317-319, 2006.
  98. G. Lin, M.-Y. Fu, H.-J. Sheng, H.-T. Sun and W.-F. Liu, "A High Sensitivity Index Sensor Based on No-Core Fibers," Applied Mechanics and Materials, vol. 284-287, pp. 1986-1990, 2013.
  99. J. Villatoro, M. O. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes and V. Pruneri, "Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity," Opt. Exp., vol. 17, no. 3, pp. 1447-1453, 2009.
  100. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard and A. O. Bjarklev, "All-silica hollow-core microstructured Bragg fibers for biosensor application," IEEE Sensors Jnl., vol. 8, no. 7, pp. 1280-1286, 2008.
  101. X. Sun, "Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism," Opt. Lett., vol. 32, no. 17, pp. 2484-2486, 2007.
  102. B. Sun, M.-Y. Chen, Y.-K. Zhang and J.-C. Yang, "Design of refractive index sensors based on the wavelength-selective resonant coupling phenomenon in dual-core photonic crystal fibers," J. Biomed. Opt., vol. 17, no. 3, p. 037002, 2012.
  103. J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman and T. R. Wolinski, "Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers," Opt. Commun., vol. 281, no. 17, pp. 4339-4342, 2008.
  104. D. J. J. Hu, P. Shum, C. Lu, X. Sun, G. Ren, X. Yu and G. Wang, "Design and analysis of thermally tunable liquid crystal filled hybrid photonic crystal fiber coupler," Opt. Commun., vol. 282, no. 12, pp. 2343-2347, 2009.
  105. K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt., vol. 7, no. 8, pp. L13-L20, 2005.
  106. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin and W. Rudolph, "Mid-infrared gas filled photonic crystal fiber laser based on population inversion," Opt. Exp., vol. 19, no. 3, pp. 2309-2316, 2011.
  107. Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humber and Q. Dinh, "Temperature sensor by using selectively-filled photonic crystal fiber Sagnac interferometer," IEEE Photon. J., vol. 4, no. 5, pp. 1801-1808, 2012.
  108. H. W. Lee, M. A. Schmidt and P. S. J. Russell, "Excitation of a nanowire "molecule" in gold-filled photonic crystal fiber," Opt. Lett., vol. 37, no. 14, pp. 2946-2948, 2012.
  109. N. Healy, J. R. Sparks, R. R. He, P. J. A. Sazio, J. V. Badding and A. C. Peacock, "High index contrast semiconductor ARROW and hybrid ARROW fibers," Opt. Exp., vol. 19, no. 11, pp. 10979-10985, 2011.
  110. D. K. C. Wu, B. T. Kuhlmey and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., vol. 34, no. 3, pp. 322-324, 2009.
  111. Y. Wang, M. Yang, D. N. Wang and C. R. Liao, "Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity," IEEE Photon. Technol. Lett., vol. 23, no. 20, pp. 1520-1522, 2011.
  112. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol., vol. 17, no. 5, pp. 985-991, 2006.
  113. D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum and T. Wolinski, "Fabrication and Characterization of a Highly Temperature Sensitive Device Based on Nematic Liquid Crystal-Filled Photonic Crystal Fiber," IEEE Photon. Jnl., vol. 4, no. 5, pp. 1248-1255, 2012.
  114. S.-M. Kuo, Y.-W. Huang, S.-M. Yeh, W.-H. Cheng and C.-H. Lin, "Liquid crystal modified photonic crystal fiber (LC-PCF) fabricated with an un-cured SU-8 photoresist sealing technique for electrical flux measurement," Opt. Exp., vol. 19, no. 19, pp. 18372-18379, 2011.
  115. F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett., vol. 85, no. 12, pp. 2181-2183, 2004.
  116. T. R. Wolinski, S. E. A. Czapla, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki and R. Dabrowski, "Photonic liquid crystal fibers for sensing applications," IEEE Trans. Instrum. Meas., vol. 57, no. 8, pp. 1796-1802, 2008.
  117. J. J. Hu, G. Ren, P. Shum, X. Yu, G. Wang and C. Lu, "Analytical method for band structure calculation of photonic crystal fibers filled with liquid crystal," Opt. Exp., vol. 16, no. 9, pp. 6668-6674, 2008.
  118. G. Ren, P. Shum, J. Hu, X. Yu and Y. Gong, "Study of polarizationdependent bandgap formation in liquid crystal filled photonic crystal fibers," IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 602-604, 2008.
  119. D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang and T. Wolinski, "A Compact and Temperature-Sensitive Directional Coupler Based on Photonic Crystal Fiber Filled With Liquid Crystal 6CHBT," IEEE Photon. J., vol. 4, no. 5, pp. 2010-2016, 2012.
  120. F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng and Z. Chen, "Special optical fiber for temperature sensing based on cladding-mode resonance," Opt. Lett., vol. 16, no. 17, pp. 12967-12972, 2008.
  121. L. Jin, Z. Wang, Q. Fang, B. Liu, Y. Liu, G. Kai, X. Dong and B. Guan, "Bragg grating resonances in all-solid bandgap fibers," Opt. Lett., vol. 32, no. 18, pp. 2717-2719, 2007.
  122. Z. Xu, J. L. Lim, D. J. J. Hu, Q. Sun, R. Y.-N. Wong, M. Jiang and P. P. Shum, "Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber," Opt. Express, vol. 24, no. 2, pp. 1699-1707, 2016.
  123. J. Petrovic, Y. Lai and I. Bennion, "Numerical and experimental study of microfluidic devices in step-index optical fibers," Appl. Opt., vol. 47, no. 10, p. 1410–1416, 2008.
  124. A. Nahmad-Rohen, H. Contreras-Tello, G. Morales-Luna and A. García-Valenzuela, "On the effective refractive index of blood," Phys. Scr., vol. 91, no. 1, p. 015503 (8pp), 2016.
  125. J. G. Quinn, S. O’Neill, A. Doyle, C. McAtamney, D. Diamond, B. D. MacCraith and R. O’Kennedy, "Development and Application of Surface Plasmon Resonance-Based Biosensors for the Detection of Cell–Lig and Interactions," Analytical Biochemistry, vol. 281, no. 2, pp. 135-143, 2000.
  126. J. L. Lim, D. J. J. Hu, P. P. Shum and Y. Wang, "Design and Analysis of Microfluidic Optical Fiber Device for Refractive Index Sensing," IEEE Photon. Tech. Lett., vol. 26, no. 21, pp. 2130-2133, 2014.
  127. K. Zhou, Y. Lai, K. Sugden, L. Zhang and I. Bennion, "A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing," Opt. Exp., vol. 15, no. 24, p. 15848–15853, 2007.
  128. C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, B. J. Eggleton and L. E. Rodd, "Compact tunable microfluidic interferometer," Opt. Exp., vol. 12, no. 22, p. 5440–5447, 2004.
  129. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo and R. Osellame, "Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching," Optics Express, vol. 17, no. 10, pp. 8685-8695, 2009.
  130. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Optics Letters, vol. 26, no. 5, pp. 277-279, 2001.
  131. Y. Lai, K. Zhou, L. Zhang and I. Bennion, "Microchannels in conventional single-mode fibers," Opt. Lett., vol. 31, no. 17, pp. 2559-2561, 2006.
  132. F. Poli, A. Cucinotta and S. Selleri, Photonic Crystal Fibers: Properties and Applications, Dordrecht: Springer, 2007.
  133. K. Kurokawa, K. Tajima, K. Tsujikawa, K. Nakajima, T. Matsui, I. Sankawa and T. Haibara, "Penalty-Free Dispersion-Managed Soliton Transmission Over a 100-km Low-Loss PCF," Jnl. of Lightwave Tech., vol. 24, no. 1, pp. 32-37, 2006.
  134. W. G. French, J. B. MacChesney, P. B. O'Connor and G. W. Tasker, "Optical waveguides with very low losses," The Bell Sys. Tech. J., vol. 53, pp. 951-954, 1974.
  135. J. B. MacChesney, P. B. O'Connor, F. V. DiMarcello, J. R. Simpson and P. D. Lazay, "Preparation of low loss optical fibers using simultaneous vapor phase deposition and fusion," in Proc. of Intern. Congr. on Glass, Kyoto, 1974.
  136. Kenneth E. Hendrickson, The Encyclopedia of the Industrial Revolution in World History, vol. 3, Maryland: Rowman & Littlefield, 2015.
  137. T. Li, Optical Fiber Communications: Fiber Fabrication, vol. 1, Florida: Academic Press, 1985, p. 34.
  138. W. H. Tranter, D. P. Taylor, R. E. Ziemer, N. F. Maxemchuk and J. W. Mark, The Best of the Best: Fifty Years of Communications and Networking Research, Canda: Wiley-IEEE Press, 2007, pp. 194-196.
  139. Y. Zhang, Y. Li, X. Lan, Y. Huang, G. Chen and H. Xiao, "Fringe Visibility Enhanced Extrinsic Fabry–Perot Interferometer Using a Graded Index Fiber Collimator," IEEE Photon. Jnl., vol. 2, no. 3, pp. 469-481, 2010.
  140. B. J. Thompson and E. Wolf, "Two-Beam Interference with Partially Coherent Light," Jnl. of the Opt. Society of America, vol. 47, no. 10, pp. 895-902, 1957.
  141. Y. Tian, W. Wang, N. Wu, X. Zou, C. Guthy and X. Wang, "A Miniature Fiber Optic Refractive Index Sensor Built in a MEMS-Based Microchannel," Sensors, vol. 11, no. 1, pp. 1078-1087, 2011.
  142. S. Todoroki, "Fiber fuse propagation behavior," in Selected Topics on Optical Fiber Technology, Croatia, IntechOpen, 2012, pp. 551-570.
  143. R. Kashyap, "Kashyap -- The Fiber Fuse - from a curious effect to a critical issue: A 25th year retrospective," Opt. Express, vol. 21, no. 5, pp. 6422-6441, 2013.
  144. E. M. Dianov, I. A. Bufetov and A. A. Frolov, "Destruction of silica fiber cladding by the fuse effect," Opt. Express, vol. 29, no. 16, pp. 1852-1854, 2004.

No comments:

Post a Comment